Fog simulation using a mesoscale model in and around the Yodo River Basin, Japan.
نویسندگان
چکیده
In this study, fog simulations were conducted using the Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) in and around the Yodo River Basin, Japan. The purpose is to investigate the MM5 performance of fog simulation for long-term periods. The simulations were performed for January, February, March, and July, 2005 with a coarse 3-km and a nested fine 1-km grid domains. Results of the simulations were compared with data from ten meteorological observatories, fog sampling site in Mt. Rokko, and visibility measurement sites along the Second Meishin Expressway. At the meteorological observatories, the MM5 predictions agreed well with the observed temperature and specific humidity. In the Mt. Rokko region, MM5 generally reproduced the occurrence of relatively thick fog events but tended to overestimate liquid water content (LWC) of fog (by factors of 2.2-3.3 in terms of monthly mean LWC). In the Second Meishin Expressway region, while MM5 identified the specific sites at which fog either frequently or seldom occurs, the model underestimated the monthly fog frequencies by factors of more than 1.5. Overall, MM5 reproduced the general trend of fog events, and the model performance may be improved by using more adequate land surface data and suitable physics options for our study.
منابع مشابه
Elevated risk from estrogens in the Yodo River basin (Japan) in winter and ozonation as a management option.
A simple model was set up to predict estrogen concentrations and endocrine disruption risk in the Yodo River, Japan. This catchment spans the conurbations of Kyoto and Osaka and is the main source of drinking water for Osaka City, Japan. From the river survey data (5 separate occasions between 2005 and 2008), a maximum of 32 g per day estrone (E1) load was observed in the most downstream site o...
متن کاملRiver Flow Simulation Using SWAT Physically Based Model in Barandouzchay of Urmia Lake River Basin
Nowadays, there are too many models in the world for simulation of hydrological processes, such as the SWAT physically based model. The SWAT model is a continuous and physically based hydrologic model that is the smallest unit in this model is Hydrologic Response Unit, and all hydrological processes are simulated in each of these units. This model can simulate runoff, sedimentation, erosion and...
متن کاملInvestigating Pareto Front Extreme Policies Using Semi-distributed Simulation Model for Great Karun River Basin
This study aims to investigate the different management policies of multi-reservoir systems and their impact on the demand supply and hydropower generation in Great Karun River basin. For this purpose, the semi-distributed simulation-optimization model of the Great Karun River basin is developed. Also, the multi-objective particle swarm optimization algorithm is applied to optimize the develop...
متن کامل"Technical Report" Flood Hydrograph Simulation Using HEC-HMS Model in Sarbaz River Basin of Sistan and Baluchestan Province
Hydrological models are simplified representation of the real basin system, which helps to assess basin function in response to different inputs and better understanding of hydrological processes. The HEC-HMS model is one of the most important hydrological models for Flood estimating volumes and discharge in watersheds. In this research, the HEC-HMS hydrologic model was used to simulate the ...
متن کاملSpatial Analysis of Flood Hazard in Nirchay River Basin Using HEC-HMS Model and and fuzzy logic
Floods are one of the most abundant and destructive natural disasters that every year are caused heavy losses of life and property. Due to human activity in river systems and construction in rivers, flood damage has an upward trend. One of the most important actions to reduce flood damage is the provision of flood hazard zoning maps and their use in spatial planning. In this study, the risk of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of environmental sciences
دوره 20 7 شماره
صفحات -
تاریخ انتشار 2008